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value of OF(S)/Ou,~ to be an easily programmed quan- 
tity. 

The orientation and location of the axial system for 
a segment relative to its initial position are refinable 
parameters. Linear independence of variables must be 
considered since it is not possible to refine simulta- 
neously all atom positions in a segment as well as all 
the axial systems. This problem can be avoided if the 
axial system for one segment is fixed. 

A special case of equivalent segment constraint is 
when a molecule of inherent symmetry is located at a 
position of lower symmetry in the unit cell. The in- 
herent symmetry can be imposed as a constraint by 
describing each pseudo-equivalent segment by its own 
axial system. All these axial systems have a common 
origin and have a fixed relationship to a reference axial 
system VAj, at the same origin ~PX0 ~ PAj. Changes in 

] 
the atom positions within a segment relative to its 
axial system are then common to all segments. How- 
ever only the orientation and location of the reference 
axial system PAj can be refined if the symmetry con- 
straint is to be observed. This axial system is refined 
relative to its initial position using initial positions de- 
scribed in the PA r axial system for the pseudo-equiv- 
alent atoms. 

Conclusion 

It has been shown that it is possible to write a program 
for least-squares refinement so that meaningful con- 
straints can be applied by simply deciding whether or 
not to refine certain standard parameters. This choice 
is made possible by the use of a number of orthonormal 
axial systems. The systematic removal of constraints 

is also possible in such a system and the significance 
of those parameters which remove a constraint is more 
easily assessed. 
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A simpler derivation of the equations of Schomaker & Trueblood [Acta Cryst, (1968), B7,4, 63-76] is 
given. It is shown that the ready interpretation of the meaningfulness of refinable parameters is best 
achieved by selecting the centre of action as origin and describing the motion with parameters defined 
relative to the principal axes of libration. A choice of 20 variables is made so that all meaningful con- 
straints on the TLS model correspond to certain of the variables having zero value. It is shown that the 
five parameters that distinguish the TLS model from the TLX model do not alter the mean-square dis- 
placement of any atom. Neither do they alter the displacement of the mean from the position of 
maximum probability for any atom. 

Introduction 

There is an unfortunate tendency in X-ray crystallogra- 
phy always to describe structures relative to crystal- 

lographic axes. If a non-crystallographic axial system 
is used to describe some feature of a crystal structure 
then it is only necessary to know the relationship of 
the origin and orientation of the axial system with 
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respect to the crystallographic axes to evaluate struc- 
ture factors and it is not necessary to transform the 
parameters back to the crystallographic axial system 
for the purpose of evaluating differentials for least- 
squares equations (Rae, 1975a, b). Parameters obtained 
for one axial system are transformations of parameters 
obtained for a different axial system and it should be 
emphasized that the use of an inappropriate axial sys- 
tem makes it extremely difficult to interpret the vari- 
ance-covariance matrix of refined parameters. 

Schomaker & Trueblood (1968) have derived a gen- 
eral description of rigid-body motion in a general axial 
system and interpretation of this description is ob- 
tained by transformation back to the variable space 
that could have been used initially. 

Pawley (1970), while noting that unconstrained TLS 
refinements can give meaningless results, was unable 
to determine the cause of this problem because of the 
choice of a fixed axial system to describe the refinement. 
As will be seen in the following derivation the inter- 
mixing of parameters that best describe the thermal 
motion can be quite complex if an inappropriate axial 
system and choice of variables is used. 

The displacement of an atom in a rigid molecule 
may be described using six linearly independent com- 
ponents. We choose these components as three trans- 
lational movements and three rotational movements 
about mutually orthogonal non-intersecting axes. The 
displacements of these axes from the centre of mass 
and orientation of these axes with respect to the prin- 
cipal inertial axes of the rigid molecule constitute nine 
degrees of freedom which may be chosen to simplify 
description of the system. 

We let ~ 2 3 X., X., X.  be the equilibrium position of the 
nth atom with respect to an intersecting set of ortho- 
normal axes located at some origin. The three axes of 
rotation are parallel to these axes and are displaced 
by amounts 0, ~r 2, lr3; 2r~,0,2r3; 3r~,ar2,0 respectively. 
The atomic displacements u~, u2, ua arising from the six 
linearly independent movements are given by 

3 2 3 2 u~=fi  + 2 2 ( X . -  r ) - 2 3 ( X n - 3 r  2) 

u2 = t2 + 23(X~-3r~)- 2~(X 3 -~ r  3) 

u 3 = t 3  q - , ~ l ( X 2 - ' r 2 ) - , ~ 2 ( X 1 - 2 r ~  ) (1 )  

using the six variables t~ (translation), 2, (rotation), 
i=1,2,3 .  (Throughout this paper equations omitted 
may be obtained from cyclic permutation of indices 
as may be seen in the above example.) 

Thus 

uxu~ = t,t~ + 22fi2(X, 3 -  2r3) -- 23fi2(X 2 -  3r2) 

+ ~ ( x . ~ -  2r~) ~ + ~2~(x~.-~r~) 2 

- 2~2~z(x~-3~) (x~.-~r ~) 

u~u2= f i t 2 -  2 d d X a , -  ar 3) + 22t2(X 3 -  2r3) 

+ 23tx(X~,-3r ~) - 23tz(X2-3r  2) 

- 23,;L3(X~ - 3r 1) ( x ~ - a r  z) 

- ;~l;~2(x~-lr3) ( x ~ - 2 r  3) 

+ 2321(X~- 3r 2) ( X ~ - * r  3) 

-b ,~,2,;1,3(Xn3 - 2r  3) ( X n l - 3 r l ) .  ( 2 )  

When averaged over all motions (u tus)=Ulg , 
( tds )  = Tis, (2 , t s )=Sis ,  ( 2 ,2 s )=L , s  so that 

Un = T;1 + " 3 • z S z t 2 X n _ _  $ 3 1 2 X n  q_ L z z X n X  3 3 
~t- " 2 2 ' 2 3 

L 3 3 X n X  n --  2 L 2 3 X n X  n 

U 1 2 =  T~ 2 _ (S~1  - S '22)X3 ..~ S ; l X l n  __ 8 3 2 X  n ,  2 
' 1 2 ' 3 3 ' 2 3 L 3 3 X n X  n " 3 1 - L 1 2 X n X n  (3) -}- L 3 1 X n X  n -[- - -  L 2 3 X n X  n 

where 

T~I = Tn - 2 S 2 1 2 r  3 -t- 2S313r  2 -'[- L22 (2 r  3) 2 

-1-/.,33(3/,2) 2 - 2L233r22r 3 

T12  __~ T12 jr_ S l l l r  3 _ S222r  3 _ $313r  1 -Ji- S323r  2 _ L333r  13 r 2 

_ L121r32r 3 _~_ L313r  21r 3 ..~ L232r33r 1 

S21  = $21 - -  L222r  3 -1- L233r  2 

S'12 = SR + Ln~r 3 - 1-,313r 1 

s h - s ~ = s ~  - & ~  - L ~ (  ' r ~ + ~r 3) + Lz?r ~ 
_]_ L233r 1 and L~j =L~j.  (4) 

We see that the libration tensor L is independent of, 
but the translation tensor T and interaction tensor S 
are dependent on, the displacement parameters. The 
values T~s, S~s, L~s are the values obtained for zero dis- 
placement parameters. 

We also wish to see how parameters T'~j, S~j, L' u vary 
with change of axis directions but no change of origin. 
The principal values (PLll, PL22, PL33) and principal axes 
(PAa, PA2,PA3) of the L tensor are independent of axial 
choice and are related to an initial choice of axes 
(A~,A2,A3) by relationships A~=~R~f'Aj and PAj= 

J 
ZR~jA~ where R~j=At .  PAj, if orthonormal axial sys- 
i 

tems are assumed. We shall use the prefix p to imply 
an axial system corresponding to the principal direc- 
tions of the L tensor and the absence of a prefix to 
imply the initial axial system. 

A vector quantity t is describable as t = ~ h A ~ =  
i 

~Ptf'Aj where h=A~.  t. Thus h = ~ R i j P t j  and Ptj= 
J 
~R~sti. 
i 

Likewise 

and 

Pus= ~ R~sul , P,~s = ~ R,s~l 
i i 

It follows that 

I'X~= ~ R,jXt, • 
i 

PUkz = ~ UtjR~kRgt , 
0 

PS~z= ~, S[fR~kRn 
q 

PL~t = ~ L~jRikRjt , 
0 

(5) 
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and 
PTj.= ~ TIjRikRjt . (6) 

0 

As ~,8~R~kRjz=Okz (8~j=0 if i # j ,  ~ . =  1) it is seen that  
0 

the value of SI~+S'2z+S~3 does not alter the values 
of PS~a and (PS~k--PSI3 when k # l .  It should be noted 
that  (PS'~-  PS[~) = ~ , (S[ j -  Sj~)R~kRy~ so that an origin 

6 
shift that  would make S '  symmetric would also make 
~'S' symmetric and if S '  is symmetric then so is PS' 

This unique origin shift can be obtained from (4) by 
putt ing 2rl=3r~=X~, 3r2=~rZ=X~, ~r3=ZrZ=X~ and 
S . = S ~ .  

Thus 

Si~-s 'z~=(Lh + L'z~)X~- L3~X~- L,3X~ (7) 
or for the t ransformed axes 

PX~=(PSi2-~S'~)/(PLI~ + PL'~9 (8) 

where 
~X~o= ~ R.X~ . 

i 

If  we use the principal axial system (PLus=0 for 
i # j ) ,  equations (4) become 

VTi~=~,Tix- 2PS212r 3 + 2PS3~ar 2 + PL22(Zr3) 2 
+ PL33(3r 2)2, 

~Ti2 = PT,2 + (PSI , -  ~$22) (Xr 3 + 2r3)/2 
+ (PSu + PS22) (ir3-Zr3)/2-PSz~3r ~ 
+ PS323r 2 - PL33ar 13r2 ' 

PS'21 PS21 PL222r  3, p ~ "  - - p c  _ t _ p r  1,.3 = - -  ~-'12-- *-JX2 ~ -~--'11" 

PSI1 pc '  - p ~  pc ' PL~ (9) 
- -  ~ 2 2 - -  ~--'11-- ~22~ PLtj = 

It is seen we can make PS~=O for i # j  by having 

~r3=~Si2?L; ,  3r~=-PS;2/PL;3. 

Xr2=-pSh/PLi.  2r3=-pS;dPL2~. (10) 

Since S , - S ~  values rather than S ,  values are deter- 
mined from (3) it is seen that  1'7"12 is only precisely 
determined if ~r 3 = 2r3. 

We note that  

~Zl~(lr~ - PX]) = - ~L',2(2r ~ - PX~) 

=(~L~,~'S'~ + PL'22PSI2)/(PLh + ~L'~2) (11) 
if ~r ~ values are chosen to satisfy (10). 

If  we use the principal axis system and choose ar~= 
2r~ = P X o  1, l r 2 = 3 r 2 =  P X o  2, 2 r 3 =  l r 3  = p X 3  then new values 
of T, S, L are given from equations (9) by 

pL - P L '  l,e ~e _ p c ' _ p c '  i j - -  lJ t~H--  ~ j j - -  t'~fl ~Jjj 

"g,2 = " g~ = (pL. . . s  ;, + . L ~ . s  i~)l ("L~ + ~L22) 

p2pu=~,T;,_ [ _  2Pg2fl, X~ + 2~,ga PXo 2 + p f  py3~, ~-3 J"-'22 .ex 0 .el 0 
+ P J '  p X 2 p X 2 ]  

"t-'33 0 OJ 

+P¢32PX02_ p f  , v-~p v-2, (12) .t-,33 xx 0 .,x OJ 

where the terms in square brackets are obtained from 
previous equations in the set. The new values of  PX~ 
are given by Pf(s,=PXJ,-PXg. 

If  we use the principal axis system and choose the 
displacements of (10) then in this final t ransformat ion 
(9) becomes 

l'L~j = PLij; PS, - pSj~ = pS,, - pSjj; pS,j = 0 for i-¢j  

pT~x=pti~ + J'L~{(3rZ-PX2o) (~r2-PX 2) 
+(~r3-pX~) (2r3-pXg)} 

l' 7'12 = ~' T~2 - p Six (t r 3 _ p X ~) + p S2z(2r 3 - p X ~) 
+ PLaa(3r~-PX~) (3rZ-~'X2). (13) 

We note that  PT~j ( i # j )  is only precisely determined 
if PS~j = 0 since otherwise we must assume a value for 
~$11 + PS22 + PS33. 

Constraints on the TLS model 

An obvious initial axial system for the rigid group of 
atoms is one that  coincides with the centre of  mass 
and the principal inertial axes. 

If  the group of atoms has an inherent point  sym- 
metry then the symmetry elements can be related to 
the inertial axes. The principal symmetry axis is taken 
as coincident with the third principal axis of inertia 
and if applicable a secondary symmetry axis is taken 
as coincident with the first principal axis of  inertia. 
The coincidence of the centre of  mass of the rigid 
group of atoms with a special position in the crystal 
imposes constraints on the TLS tensors. 

It is possible to consider all possible constraints of  
the TLS model to be simply the choice to refine or not  
to refine certain members of a set of 20 linearly inde- 
pendent variables by appropriate  choice of origin and 
axis directions. We create this set of variables as 

DI=(Llx  + L22 + La3)/3, 

D2=/ -z3- (Lx ,  +Lz2+L33)/3 ,  Da=(L ,~-L22) /2 ,  

D4 = L12, Ds = L13, D6 = L 2 3  , 

E~ =(T~ + T2~+ T3~)/3, 
E2=T~-(TI~+ T~2+ T~3)/3, E~=(T,~-T~)/2,  

E,=T,2, Es=T,3, 
F, =C2~S2~-C~2S~2, 

F3 = C,2S12 - C21S~t , 

F 4 = C32S23 -~- C 2 3 S 3 2 ,  

F6 = C21S12 + C12S21, 

E 6  --~-~ T23 , 

F 2 =  C31S3, - Q3Sx3 , 

Fs = C13S31 + C31S13, 

F7 = (2Sa3- S x l -  $22)/2, Fs = S n -  $22 where 

C,j = L , / ( L  2, + L]j) '/2 . (1 4) 

We note that  S~l + $22 + $33 cannot  be determined. 
The inverse relations for inclusion in (3) are 
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L n  = D1 - D2/2 + D3 , L22 = D1 - D2 /2 -  Da , 

L33 = D I  + D 2  , L 1 2 = D 4 ,  Ll3 = D 5 ,  L23 = D 6  , 

TII = E I -  E2/2 + E3 , T22= E~ - E2 /2 -  E3 , 
T~z= EI + E2 , T ~ =  E4 , T ~ =  E~ , T ~ =  E~ 

$23 = C23F1 + C3zF4, 831 = C3~F2 + C13F~ , 

$12 = GzF3 + czlr6 , 832--- -- C~2F1 + C23F4, 
S~  = - Q3F2 + C~F~ , $21 = - C~F~ + Q2F6, 
S ~ -  S22= F~ , S~2-- S3~= - F ~ -  Fd2 , 

Saa - $1~ = F7 - F8/2. (15) 

Symmetry constraints impose zero values on certain 
of these parameters, D~, E~, F~. The non-zero parameters 
(refinable parameters) are given in Table 1. 

Point group* 
1 
2 
m 

222 
ram2 
3, 4, 6 

32, 422, 622 
3m, 4mm, 6ram 
~2m 
-6, ~rn2 
23, 43rn, 432 

Table 1. Refinable parameters 

Parameters 
D I Dz D3D 4D sD 6Ex E2 E3E4EsE6F1F2 F3FaFsF6F7F8 
DID2D3D4 E1E2E3E4 F3 F6FTFs 
D1DzD3D4 E1E2E3E4 FIF2 F4F5 
DID2D3 E1E2E3 FTF8 
D1D2D3 E1E2E3 F3 F6 
DID2 EIE2 Fa F7 
D1D2 EIE2 F6 Fa 
D1D2 EIE2 F7 
DxD2 EIE2 Fa 
D1D2 E1E2 Fs 
DID2 EIE2 
Dx E~ 

* Point symmetry i makes all F~ zero 

The values of D~ (or E~) may be constrained to make 
L (or T) spherically symmetric (i= 1 only), axially 
symmetric ( i=1, 2 only), have three principal axes 
parallel to the principal axes of inertia (i= 1,2, 3 only) 
or have one axis parallel to the third principal axis 
of inertia (i = 1,2, 3, 4 only). 

Pawley (1972) has summarized the usual constraints 
on the TLS model. The TL constraint makes the S 
matrix zero for an initial orthonormal axis system in- 
tersecting at a point (commonly the centre of mass). 
Constraining the F~ values to be identically zero then 
keeps the centre of action fixed. This is a necessary 
constraint if the rigid group is on a site of symmetry ] 
in the crystal. The TLX constraint is a TL model 
where the centre of action has to be located. 

If the principal axis directions of the L tensor are 
used to describe the TLS model it is seen using (10) 
and (14) that 

F1/[(PL22) 2 + (PL33)211/2 

= [("L22)22r ~ + ("L33)23rl]Z[("L22)2 + ("/_~3) 2] 

Fd[("L~) 2 + ("L~)~] "~- 
= (2r l -  3r1)"L22"LaJ[("L22)2 + ("L33)2]. (1 6) 

Thus in such an axial system the TLX constraint 
corresponds to having F~ = 0 (i= 4 to 8). 

From (8) the centre of action is at 

PXo 1 = (PL222r I + PLaa3rl)/(UL22 + PL33), etc. 

so that 

F'I[("L22) 2 + ("L33)2]~/2-"Xo ~= [("L22- "L33)/ 

("Lzz + "L33)]F4/[("L2z) z + ("L33)z] 1/z etc. 

From (3) the mean-square value of the displace- 
2 3 ment of an atom at X~, X,, X, is given by 

(u11 + u22 + u33)= (Th + T'22 + Th) 
- 2x~.(s'~3- s ~ ) -  2x~ . ( s~ l -  s '~)  

- 2 x ~ . ( S l z - S h )  
_+_(Lll+L'22+L;3)  i 1 2 2 ( X , X ,  + X , X ,  

3 3 + X , X , ) -  ~ ' ' J (17) Li jXnXn  • 
0 

From (7) it is seen that an origin X~0, 2 3 X0, X0 may be 
chosen to make S i j - S j t = O .  If the principal axes of 
the L tensor are used as reference axes then it is readily 
shown using (8) and (12) that transformation to this 
origin gives 

"221+"$22+"$33="Th +"T~2+"T;3 
p p 2p 2 py3py3] --[ Lll(Xn X n +  - -n  "-n/ 

p p 3p  3 + L22( Xn X n + P y l p y l ~  
, n 1, 1 (18) + La3( X ,  X ,  + "X2,"XZ,)] 

and so minimizes the trace of T. 
It is seen from (13) that this trace is further min- 

imized by using non-intersecting axes to make S diag- 
onal. This result requires "L ,  >0 which must be true 
for the TLS description to be meaningful. 

The fact that three non-intersecting perpendicular 
axes can be found to make L~j=S~j=0 for i # j  shows 
that the average motion of a rigid molecule can be de- 
scribed by six separate non-covarying average motions 
(Schomaker & Trueblood, 1968). These motions are 
three screw rotations about the perpendicular non- 
intersecting axes and three translations along a differ- 
ent three orthonormal directions. The ith screw rota- 
tion has t~j=tj=O f o r j # i  in (1). The average motion 
is then described by saying 212~="L., 2 d , = " S .  and 
hence h h = " S 2 j " L u .  Johnson & Levy (1974) have 
pointed out that Y?S~J"L.  is a minimum if "$1~+ 

i 
"Szz +"$33 has a value such that 

"Sll=[("Sa~-"S22)/"L2z +("Su-"S3a)/"L33]/ ~ "Lii 1 etc. 
i 

(19) 

thus giving a maximum residual uncorrelated trans- 
lational motion which may be described as three un- 
correlated translational motions in the principal axis 
directions of the residual T tensor. 

We see that choosing an axial system parallel to the 
principal axes of the L tensor allows the parameters 
Dt and Ft to be individually associated with distinct 
features of the three screw rotations. 

Values of the T, L and S tensors are evaluated from 
either Uij values or else from the least-squares refine- 
ment of X-ray or neutron structure factors. If the U,I 
are known then the evaluation is a linear least-squares 
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problem [see (3)], and for a fixed weighting scheme 
convergence occurs in a single cycle. However the esti- 
mation of the covariances of the parameters D~,E~, F~ 
which best describe the motion using the best axial 
system are not easily obtained from a refinement cal- 
culated for some other axial system as may be seen 
from the transformations in (12). Transforming the 
axial system, the new U u parameters are a linear com- 
bination of the old U u parameters and so the covari- 
ances of the new U u parameters are easily obtained. 
The usual least-squares procedure regards U u values 
as uncorrelated observations. Using weights of w= 
1/var (Uu) can be expected to give a slightly different 
description from that obtained in the previous cycle, 
that is L u and S u - S j ~  (iCj) may not be identically 
zero even though the axial system was chosen from the 
previous cycle to make this so. 

A TLX constraint analysis of U u parameters may 
be obtained by iteration procedures with F~ set iden- 
tically zero for i=  4 to 8. An initial cycle setting C u = 
1/1/2 in (14) may be used to find an initial centre of 
action and orientation of the L tensor. Transforming 
the axial system to make L u and S u - S j ~  ( i ¢ j )  equal 
zero enables better values of C u to be calculated for 
a further cycle with F~ = 0 (i= 4 to 8). 

It should be noted that the relaxation of the TLX 
constraint will not alter the value of U~I + U22 + Uaa for 
any atom should the T and L tensors and the centre 
of action remain unaltered [see (17)]. 

Calculation of the T, L and S tensors using the least- 
squares refinement of structure factors is again best 
handled by the use of D~, Et and F~ parameters. Each 
cycle the parameters are redefined relative to the axial 
system that makes L u and S u -  Sj~ equal zero for i Cj. 
Refined variables are then directly associated with 
features of the axial system that best describes the in- 
terpretation of the TLS model and allows constraints 
on the model to be made by setting certain D~, E~, F~ 
parameters as identically zero. The variances calcu- 
lated from the least-squares equations are then directly 
associated with meaningful parameters and the covari- 
ance and refinability of parameters is more easily un- 
derstood. 

If atoms in a rigid group are defined with respect 
to their inertial axes and assumed centre of action 
(usually the centre of mass) then successive refinement 
cycles can occur refining E~, all Et, all E~ and Dx, D2, D3; 
all D~,E~; all D~,E~ and F1,F2,Fa; all D~,E~ and F~ 
(i= 1 to 6) and finally all D~,E~,Fi. Symmetry con- 
straints necessarily restrict this choice. If the rigid group 
is inherently symmetric but lies on a site in the crystal 
of lower symmetry, the constraints of the higher sym- 
metry on the L and S tensors can still be imposed by 
choice of D~ and F~ parameters (see Table 1). 

Appropriate expressions for least-squares refinement 
are given elsewhere (Rae, 1975b). It is noted that it is 
not necessary to transform parameters back to the 
crystallographic axial system to evaluate differentials 
for the least-squares equations. 

Correction to atom positions 

These corrections are best carried out using the or- 
thonormal axial system that has axes parallel to the 
principal axes of libration. The nth atom is described as 

p 1 p 2 p  3 being at Xn, X,, X,, and the centre of action is at 
PX0 ~, PX 2, PX]. The corrections arise from rotation about 
three non-intersecting screw rotation axes displaced 
from the centre of action by amounts 0, -P~I3/PfLn, 
P P • P P p ~  P . P P p A  ~ , 2 1  L , , ,  ~.31 L22. o. - s2.1 L22. - ~./ L33. S~.l 
P/'-a3, 0 respectively. Thus the nth atom is displaced 
from the first screw axis by an amount 0, py2.. n -  py2.~ 0 Jt- 
p~la/pLtl, pr3,. ,,-- pva_p~12/pLll.,, 0 The three screw axes 
are non-covariant and so a single screw rotation may 
be thought of as acting on an atom, the most probable 
position of which is the mean of the probability den- 
sity distribution arising from all other motions. Since 
(cos 0 ) - - 1 - ( 0 2 ) / 2  for small 0 the inclusion of the 
motion about the first screw axis shortens the mean 
position of an atom at a distance d from the screw 
axis by an amount ½PLlad. Thus the inclusion of the 
motion about the first screw axis shifts the mean posi- 
tion of the nth atom by an amount O, - (PX 2 -  pX2)pfLI1/ 

p 3 p 3 p p 2-P~,3, - (  Xn-- Xo) L,,/2+ ~,2. 
If the most probable position of the nth atom is 

regarded as the position p:f-l_,,, p22_,, p2a_,, when all an- 
gular displacements are zero, then the inclusion of all 
three screw rotation movements displaces the mean of 
the electron density from this point by an amount 

(pp1 p gl~ (PL22_+_pL33)/2 
- -  k . r .  n - -  . . x  O ]  

- ("2~-"X02) ("L33 + ~L,,)/2, 

_tpf.3_pva~~ . . ,  .. oJ (PL~ + PL22)/2 (20) 

since p~u ="~j,- 
It is seen that these corrections are not dependent 

on the parameters F4 to F8. Thus the imposition of 
the TLX constraint neither alters the value of (U~+ 
U22 + Ua3) for any atom nor changes the displacement 
of the mean from the most probable position. 

(Rae, 1975a) has shown how the displacement of 
the mean from its most probable position can be al- 
lowed for in a structure-factor calculation by using 
third-rank cumulants permitting the refinement of posi- 
tions of maximum rather than mean probability in 
least-squares equations (Rae, 1975b). 

References 

JOHNSON, C. K. & LEVY, H. A. (1974). In International 
Tables for X-ray Crystallography, Vol. IV. Birmingham: 
Kynoch Press. 

PAWLEY, G. S. (1970). Acta Cryst. A26, 289-292. 
PAWLEY, G. S. (1972). Advances in Structure Research by 

Diffraction Methods, Edited by W. HOPPE and R. MASON. 
Oxford: Pergamon Press. 

S C H O M A K E R ,  V .  • T R U E B L O O D ,  K. N. (1968). Acta Cryst. 
B24, 63-76. 

RAE, A. D. (1975a). Acta Cryst. A31, 334-337. 
RAE, A. D. (1975b). Acta Cryst. A31, 560--570. 


